2017 NETL CO₂ Capture Technology Project Review Meeting

August 24, 2017

Amine-Appended Metal-Organic Frameworks as Switch-Like Adsorbents for Energy-Efficient Carbon Capture

Jeffrey R. Long, Jeffrey B. Neaton, and Maciej Haranczyk

Lawrence Berkeley National Laboratory

Project Overview

Funding

- Total project funding
 DoE share: \$4.4M
- Funding for FY17: \$1.4M

Project Participants

- PI: Jeffrey Long (LBNL)
- Co-PI: Jeffrey Neaton (LBNL)
- Co-PI: Maciej Haranczyk (LBNL)

Partners (unfunded under this program)

- MOF production (Mosaic Materials)
- System development (Inventys)
- Process modeling (CCSI², EPRI)

Overall Project Performance Dates

- Project start date: 6/1/2017 (funded from ?/?/2017)
- Project end date: 5/31/2021

Overall Project Objectives

Development of a transformational technology based upon a diamineappended MOF for post-combustion CO₂ capture at a power plant

Metal-Organic Frameworks (MOFs)

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5 BET surface areas up to 7100 m^2/g

Density as low as 0.13 g/cm³

Tunable pore sizes up to 10 nm

Channels connected in 1-, 2-, or 3-D

Internal surface can be functionalized

Can we make a MOF with surfaces densely coated with amine groups?

Yaghi et al. *Nature* **2003**, *423*, 705 Kitagawa et al. *Angew. Chem., Int. Ed.* **2004**, *43*, 2334 Férey *Chem. Soc. Rev.* **2008**, 37, 191

A MOF with a High Density of Exposed M²⁺ Sites

M₂(dobdc), M-MOF-74 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)

Rosi, Kim, Eddaoudi, Chen, O'Keeffe, Yaghi *J. Am. Chem. Soc.* **2005**, *127*, 1504 Dietzel, Morita, Blom, Fjellvåg *Angew. Chem., Int. Ed.* **2005**, *44*, 6354 Caskey, Wong-Foy, Matzger *J. Am. Chem. Soc.* **2008**, *130*, 10870 Bloch, Murray, Queen, Maximoff, Chavan, Bigi, Krishna, Peterson, Grandjean, Long, Smit, Bordiga, Brown, Long *J. Am. Chem. Soc.* **2011**, *133*, 14814

A MOF with a High Density of Exposed M²⁺ Sites

 M_2 (dobdc), M-MOF-74 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)

A MOF with a High Density of Exposed M²⁺ Sites

M₂(dobdc), M-MOF-74 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)

Activated frameworks have Langmuir surface areas of 1280-2060 m²/g

Record high density of open metal coordination sites per unit mass or volume

An Expanded Form of Mg₂(dobdc) (Mg-MOF-74)

Expanded channels have a diameter of 18 Å and are lined with open Mg²⁺ sites

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

Appending Diamine Groups

Dangling amines coat the periphery of the channel leaving space for rapid CO₂ diffusion

McDonald, Lee, Mason, Wiers, Hong, Long J. Am. Chem. Soc. 2012, 134, 7056

Strong, Selective CO₂ Adsorption

High affinity of alkyl amines for CO₂ results in high capacity at low pressure
 Very little N₂ uptake observed, leading to high selectivity of S = 200

No loss of CO₂ capacity under wet flue gas conditions

CO₂ Adsorption from a Wet Simulated Flue Gas

Mason, McDonald, Bae, Bachman, Sumida, Dutton, Kaye, Long, J. Am Chem. Soc. 2015, 137, 4787

Step-Shaped Isotherms via Cooperative CO₂ Binding

- Very little hysteresis upon desorption of CO₂
- Step shifts rapidly to higher pressure with increasing temperature

Classical versus Cooperative Adsorbents

amine solutions and other amine adsorbents

diamine-appended MOFs

2 wt % CO₂ removed, $\Delta T = 100$ ° C

15 wt % CO₂ removed, $\Delta T = 50^{\circ}$ C

Structure Reveals Insertion of CO₂ into Mn-N Bond!

- Insertion and proton transfer results in metal-bound carbamate
- ^a Ammonium cation from neighboring site forms an ion pair with the carbamate

Ammonium Carbamate Chains

Insertion of CO₂ into the metal-amine bond together with proton transfer

^{II} One-dimensional ammonium carbamate chains indicate origins of cooperativity

Cooperative CO₂ Adsorption Mechanism

Position of the step should be influenced by metal-amine bond strength

Manipulating the Adsorption Step Position

ammonium-forming amine

Single Crystal Structures of Zn₂(dobpdc)(diamine)₂

- Single crystals remain intact upon grafting diamines, activating, and adsorbing CO₂
- Primary amines preferentially bind to the metal center

Siegelman, McDonald, Gonzalez, Martell, Milner, Mason, Berger, Bhown, Long J. Am. Chem. Soc. 2017, 139, 10526

Varying Diamine Bulk in Mg₂(dobpdc)

Increased hydrocarbon bulk shifts step and also suppresses water adsorption

Siegelman, McDonald, Gonzalez, Martell, Milner, Mason, Berger, Bhown, Long J. Am. Chem. Soc. 2017, 139, 10526

Variation of the Diamine Shifts the Step Position

Image: More than 80 different diamines have now been tested in Mg₂(dobpdc)

Step position at 40 ° C varies from ~50 ppm to >1.2 bar

Siegelman, McDonald, Gonzalez, Martell, Milner, Mason, Berger, Bhown, Long J. Am. Chem. Soc. 2017, 139, 10526

Manipulating the Thermodynamics of CO₂ Capture

- Molecular level tunability enables manipulation of enthalpy and entropy
- Gen1 adsorbent achieves 90% capture with small temperature swing

Milner, Siegelman, Forse, Gonzalez, Runčevski, Martell, Reimer, Long J. Am. Chem. Soc. 2017, in press

Gen1 Material for Coal Flue Gas Capture

- Step-shaped adsorption at 40 °C and little adsorption at 100 °C
- Working capacity of 2.4 mmol/g (9.1 wt%) with a 60 °C temperature swing

Milner, Siegelman, Forse, Gonzalez, Runčevski, Martell, Reimer, Long J. Am. Chem. Soc. 2017, in press

Adsorption/Desorption Cycling in Gen1 Material

ITGA cycling experiments show no loss of capacity over 1000 cycles

Milner, Siegelman, Forse, Gonzalez, Runčevski, Martell, Reimer, Long J. Am. Chem. Soc. 2017, in press

Technical and Economic Advantages/Challenges

Advantages

- High tunability of diamine-appended framework materials
- Large working capacity due to step-shaped CO₂ adsorption
- High selectivity for CO₂ over N₂, O₂, and H₂O is possible
- Molecular level characterization is possible

Challenges

- Large scale production of the adsorbent
- Rendering the materials into a structured form
- Durability and chemical stability under real flue gas
- Reduction of regeneration cost (temperature swing)

Technical Approach and Project Scope

CO₂ adsorption tests, effect of impurities, cycling performance

Characterization

of materials for relevant

parameters for a

real process

Structure prediction

Computational prediction of suitable MOF and diamine pairs

Collaboration with partners

- MOF production
- System development
- Process modeling

Computational analysis Prediction of CO₂ binding energy, relative CO₂ isotherm step position, and mechanical properties

Development of transformative carbon capture technologies by the cooperative insertion of CO_2 in amine-appended frameworks

Experimental Design and Work Plan

Year 1	Year 2	Year 3	Year 4
 Gen1 Amine- appended MOFs synthesis 	 Synthesis of new amine-appended MOFs (Gen2) 	 Extensive characterization of Gen1/Gen2 	 Gen3 materials synthesis and comprehensive
 Effect of water, SO_x, and NO_x for Gen1 materials 	 Stability and cycling performance tests 	materialsCharacterization of materials	 characterization Characterization of materials
 Computational prediction of suitable MOF and commercially available amine pairs 	 Computational work to predict optimal amine- appended MOFs 	fabricated by industrial partnersExpanded computational search	tested on partners' site
parte			

- Project management and planning
- Literature survey and synthesis and testing of any relevant materials
- Collaboration with MOF production, system development, and process modeling partners

Project Schedule and Key Milestones (Year 1)

	Tasks	Milestones
Mater	Synthesis of amine-appended MOFs (Gen1 materials)	Deliver a new material with a working capacity of >2.5 mmol/g
ials synthesis	Characterization of the effect of water, SO_x , and NO_x on CO_2 adsorption properties of Gen1 materials	Deliver a material that retains >90% of original CO_2 uptake capacity after 20 cycles in the presence of water, SO_x , NO_x
Comput	Search optimal amine- appended MOFs within databases of reported materials	Propose 2 candidates whose CO ₂ uptake capacity is greater than 3.0 mmol/g
ation	Prediction of CO ₂ binding energies for amine-appended MOFs	Propose candidates having high CO ₂ binding energies (>70 kJ/mol)

Project Schedule and Key Milestones (Year 2)

	Tasks	Milestones					
Mate	Synthesis of new amine- appended MOFs (Gen2)	Deliver a new material with a working capacity of >3.0 mmol/g					
rials synthesis	Characterization of the effect of water, SO_x , and NO_x on CO_2 adsorption properties of new adsorbents	Deliver a Gen2 material that retains more than 95% of the original CO_2 uptake capacity after exposure to a N_2/CO_2 (= 85/15) stream containing impurities for 3 days followed by cycling tests					
Computa	Search optimal amine- appended MOFs (Gen2 materials) among computationally designed materials	Propose 2 candidates whose CO ₂ uptake capacity is greater than 3.5 mmol/g					
tion	Prediction of relative CO ₂ isotherm step position	Based on the analyses, propose the promising candidates whose step position is lower than materials prepared in Year 1					

Project Schedule and Key Milestones (Year 3)

	Tasks	Milestones					
Materials sy	Comprehensive characterization of all relevant parameters for a real process	Deliver a Gen2 material that retains more than 95% of the original CO_2 uptake capacity after exposure to a N_2/CO_2 (= 85/15) stream containing impurities for a week followed by cycling tests					
rnthesis	Characterization of materials fabricated by industrial partners	Design shaped materials that maintain at $>90\%$ of CO ₂ adsorption capacity					
Comp	Extend the material design	Propose at least 1 candidate whose <i>volumetric</i> CO ₂ uptake capacity is greater than 3.5 mmol/cm ³					
utation	Prediction of mechanical strength for a real process	Based on the analyses, propose mechanically robust candidates (>10 GPa) for practical applications					

Project Schedule and Key Milestones (Year 4)

	Tasks	Milestones				
Materials synt	Synthesis and comprehensive characterization for new (Gen3) materials predicted in Year 3	Deliver a Gen3 material that demonstrates >3.2 mmol/g of CO_2 uptake capacity after exposure to a N_2/CO_2 (= 85/15) stream containing impurities for a week followed by cycling tests				
hesis	Characterization of materials tested by partners	Performance of tested materials maintains at least 90% of CO ₂ adsorption capacity				

Project Timeline

Tasks		Year 1			`	Yea	ear 2			Year 3				Year 4			
1d3n3	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	
Synthesis of amine-appended MOFs (Gen1 materials)																	
Characterization of the effect of water, SO_x , and NO_x on			_														
CO ₂ adsorption properties of Gen1 materials																	
Search optimal amine-appended MOFs within databases																	
of reported materials																	
Prediction of CO ₂ binding energies for amine-appended																	
MOFs																	
Synthesis of new amine-appended MOFs (Gen2)																	
Characterization of the effect of water, SO_x , and NO_x on																	
CO ₂ adsorption properties of new adsorbents																	
Search optimal amine-appended MOFs (Gen2 materials)																	
among computationally designed materials																	
Prediction of relative CO ₂ isotherm step position																	
Comprehensive characterization of all relevant																	
parameters for a real process																	
Characterization of materials fabricated by industrial																	
partners																	
Extend the material design																	
Prediction of mechanical strength for a real process																	
Synthesis and comprehensive characterization for new																	
(Gen3) materials predicted in Year 3																	
Characterization of materials tested by partners																	

Project Success Criteria

Year	Success Criteria
Year 1	Prepare an adsorbent with >90% CO_2 capture from N_2/CO_2 (= 85/15) gas mixtures and a working capacity of >2.5 mmol/g under temperature swing conditions.
Year 2	Prepare an adsorbent with >90% CO_2 capture from N ₂ /CO ₂ (= 85/15) gas mixtures, a working capacity of >3 mmol/g with a smaller temperature swing than MEA (80 °C), and a regeneration energy less than 2.5 MJ/kg CO_2 .
Year 3	Prepare an adsorbent that retains the same properties as that from Year 2 after extended high-temperature cycling in the presence of water and other flue gas contaminants(water, SO_x , $NO_x = ~2\%$, 800 ppm, and 500 ppm). Synthetic cost (based on rough cost analysis) is less than \$75/kg.
Year 4	Prepare an adsorbent with >90% CO_2 capture from flue gas, a working capacity of >3.2 mmol/g, and a regeneration energy less than 2.2 MJ/kg CO_2 after extended high-temperature exposure/cycling. Synthetic cost (based on rough cost analysis) is less than \$50/kg.

High Impact Technical Risks and Mitigation Strategies

Description of Risk	Mitigation Strategies				
Computationally proposed materials are difficult to synthesize.	Computational screening will predict multiple promising materials. If one of the proposed adsorbents is difficult to prepare, we will synthesize another promising material.				
Challenges are encountered with gram-scale synthesis of a sorbent.	The Long group has extensive expertise with preparing MOFs at the gram scale. We will focus on scalability as a parameter when evaluating new adsorbents.				
Sorbents with a specific process (fixed bed or Veloxo Therm) fail to show significant reductions in energy penalty and capital cost.	Computational investigation will be performed to evaluate if the palletization of materials under high-pressure affects the CO_2 adsorption properties. In addition, we plan to elucidate the reasons for this from the close collaboration with system modeling partners.				
Calibration of sorbent performance and process limitations can impact the performance of this FWP success criteria.	Accurate data collection mitigates the inaccuracy/ indefinite of the modeling data. We will carry out analysis of new materials to minimize the uncertainty (e.g. use of large quantity of material, repeat analysis to confirm the reproducibility).				
Sorbent performance and scalability impact the technology system economics.	Any issues related to the process design will be solved in close collaboration with the partners. We will also work with MOF synthesis partners to figure out how promising sorbents will be synthesized economically.				

Progress and Current Status of Project: Facilities and Other Resources

Materials synthesis

- Fume hoods, benches and standard equipment for wet chemistry
- Gas/vapor adsorption analyzers (e.g. N₂, Ar, CO₂, water)
- Thermogravimetric analyzers (TGA) coupled with a mass spectrometer
- Laboratory built breakthrough setups
- Powder X-ray diffractometer (PXRD)
- FT-IR and UV-vis spectrometers
- Grove boxes, ovens, microscopes
- SEM, NMR (solution, solid-state), EA (CHN, ICP) are available at UC Berkeley Chemistry Department
- Access to ALS for single crystal XRD analysis

Computation

- Powerful GPU-equipped Linux workstations
- Mid-range computing clusters with multicore 2.5 GHz lvy Bridge and 2.3 GHz Haswell nodes
- Access to DOE's the National Energy Resource Scientific Computing Center (NERSC) Cray XC30/XC40 "Cascade" system

Plans for Future Testing and Development

Prediction of MOF-diamine pairs

- Search optimal amine-appended MOFs within databases
- Propose 2 candidates whose CO₂ uptake capacity is greater than 3.0 mmol/g

Prediction of CO₂ binding energies

- Optimize structures and estimate CO₂ binding energies for Gen1 materials
- Calculate water, SO_x, and NO_x binding energies

Synthesis of diamine-appended MOFs (Gen1 materials)

- Synthesis and characterization of Gen1 materials
- Test CO₂ adsorption behaviors of Gen1 materials
- Characterization of the effect of water, SO_x, and NO_x on CO₂ adsorption properties on Gen1 materials

Collaboration with partners

- Discussion of technology information needs for MOF production, system development, and process modeling
- Collection and analysis of materials characterization data
- Incorporation of relevant data into design catalogue